Copied to
clipboard

G = C328SD32order 288 = 25·32

2nd semidirect product of C32 and SD32 acting via SD32/D8=C2

metabelian, supersoluble, monomial

Aliases: C24.19D6, C328SD32, D8.(C3⋊S3), (C3×D8).5S3, (C3×C6).38D8, C33(D8.S3), (C3×C12).53D4, C24.S34C2, C325Q165C2, C6.24(D4⋊S3), (C32×D8).2C2, C12.35(C3⋊D4), (C3×C24).18C22, C2.5(C327D8), C4.2(C327D4), C8.5(C2×C3⋊S3), SmallGroup(288,302)

Series: Derived Chief Lower central Upper central

C1C3×C24 — C328SD32
C1C3C32C3×C6C3×C12C3×C24C325Q16 — C328SD32
C32C3×C6C3×C12C3×C24 — C328SD32
C1C2C4C8D8

Generators and relations for C328SD32
 G = < a,b,c,d | a3=b3=c16=d2=1, ab=ba, cac-1=a-1, ad=da, cbc-1=b-1, bd=db, dcd=c7 >

Subgroups: 312 in 78 conjugacy classes, 33 normal (13 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C8, D4, Q8, C32, Dic3, C12, C2×C6, C16, D8, Q16, C3×C6, C3×C6, C24, Dic6, C3×D4, SD32, C3⋊Dic3, C3×C12, C62, C3⋊C16, Dic12, C3×D8, C3×C24, C324Q8, D4×C32, D8.S3, C24.S3, C325Q16, C32×D8, C328SD32
Quotients: C1, C2, C22, S3, D4, D6, D8, C3⋊S3, C3⋊D4, SD32, C2×C3⋊S3, D4⋊S3, C327D4, D8.S3, C327D8, C328SD32

Smallest permutation representation of C328SD32
On 144 points
Generators in S144
(1 125 37)(2 38 126)(3 127 39)(4 40 128)(5 113 41)(6 42 114)(7 115 43)(8 44 116)(9 117 45)(10 46 118)(11 119 47)(12 48 120)(13 121 33)(14 34 122)(15 123 35)(16 36 124)(17 75 110)(18 111 76)(19 77 112)(20 97 78)(21 79 98)(22 99 80)(23 65 100)(24 101 66)(25 67 102)(26 103 68)(27 69 104)(28 105 70)(29 71 106)(30 107 72)(31 73 108)(32 109 74)(49 86 129)(50 130 87)(51 88 131)(52 132 89)(53 90 133)(54 134 91)(55 92 135)(56 136 93)(57 94 137)(58 138 95)(59 96 139)(60 140 81)(61 82 141)(62 142 83)(63 84 143)(64 144 85)
(1 110 90)(2 91 111)(3 112 92)(4 93 97)(5 98 94)(6 95 99)(7 100 96)(8 81 101)(9 102 82)(10 83 103)(11 104 84)(12 85 105)(13 106 86)(14 87 107)(15 108 88)(16 89 109)(17 133 125)(18 126 134)(19 135 127)(20 128 136)(21 137 113)(22 114 138)(23 139 115)(24 116 140)(25 141 117)(26 118 142)(27 143 119)(28 120 144)(29 129 121)(30 122 130)(31 131 123)(32 124 132)(33 71 49)(34 50 72)(35 73 51)(36 52 74)(37 75 53)(38 54 76)(39 77 55)(40 56 78)(41 79 57)(42 58 80)(43 65 59)(44 60 66)(45 67 61)(46 62 68)(47 69 63)(48 64 70)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)(18 24)(19 31)(20 22)(21 29)(23 27)(26 32)(28 30)(33 41)(34 48)(35 39)(36 46)(38 44)(40 42)(43 47)(49 57)(50 64)(51 55)(52 62)(54 60)(56 58)(59 63)(65 69)(66 76)(68 74)(70 72)(71 79)(73 77)(78 80)(81 91)(83 89)(84 96)(85 87)(86 94)(88 92)(93 95)(97 99)(98 106)(100 104)(101 111)(103 109)(105 107)(108 112)(113 121)(114 128)(115 119)(116 126)(118 124)(120 122)(123 127)(129 137)(130 144)(131 135)(132 142)(134 140)(136 138)(139 143)

G:=sub<Sym(144)| (1,125,37)(2,38,126)(3,127,39)(4,40,128)(5,113,41)(6,42,114)(7,115,43)(8,44,116)(9,117,45)(10,46,118)(11,119,47)(12,48,120)(13,121,33)(14,34,122)(15,123,35)(16,36,124)(17,75,110)(18,111,76)(19,77,112)(20,97,78)(21,79,98)(22,99,80)(23,65,100)(24,101,66)(25,67,102)(26,103,68)(27,69,104)(28,105,70)(29,71,106)(30,107,72)(31,73,108)(32,109,74)(49,86,129)(50,130,87)(51,88,131)(52,132,89)(53,90,133)(54,134,91)(55,92,135)(56,136,93)(57,94,137)(58,138,95)(59,96,139)(60,140,81)(61,82,141)(62,142,83)(63,84,143)(64,144,85), (1,110,90)(2,91,111)(3,112,92)(4,93,97)(5,98,94)(6,95,99)(7,100,96)(8,81,101)(9,102,82)(10,83,103)(11,104,84)(12,85,105)(13,106,86)(14,87,107)(15,108,88)(16,89,109)(17,133,125)(18,126,134)(19,135,127)(20,128,136)(21,137,113)(22,114,138)(23,139,115)(24,116,140)(25,141,117)(26,118,142)(27,143,119)(28,120,144)(29,129,121)(30,122,130)(31,131,123)(32,124,132)(33,71,49)(34,50,72)(35,73,51)(36,52,74)(37,75,53)(38,54,76)(39,77,55)(40,56,78)(41,79,57)(42,58,80)(43,65,59)(44,60,66)(45,67,61)(46,62,68)(47,69,63)(48,64,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(18,24)(19,31)(20,22)(21,29)(23,27)(26,32)(28,30)(33,41)(34,48)(35,39)(36,46)(38,44)(40,42)(43,47)(49,57)(50,64)(51,55)(52,62)(54,60)(56,58)(59,63)(65,69)(66,76)(68,74)(70,72)(71,79)(73,77)(78,80)(81,91)(83,89)(84,96)(85,87)(86,94)(88,92)(93,95)(97,99)(98,106)(100,104)(101,111)(103,109)(105,107)(108,112)(113,121)(114,128)(115,119)(116,126)(118,124)(120,122)(123,127)(129,137)(130,144)(131,135)(132,142)(134,140)(136,138)(139,143)>;

G:=Group( (1,125,37)(2,38,126)(3,127,39)(4,40,128)(5,113,41)(6,42,114)(7,115,43)(8,44,116)(9,117,45)(10,46,118)(11,119,47)(12,48,120)(13,121,33)(14,34,122)(15,123,35)(16,36,124)(17,75,110)(18,111,76)(19,77,112)(20,97,78)(21,79,98)(22,99,80)(23,65,100)(24,101,66)(25,67,102)(26,103,68)(27,69,104)(28,105,70)(29,71,106)(30,107,72)(31,73,108)(32,109,74)(49,86,129)(50,130,87)(51,88,131)(52,132,89)(53,90,133)(54,134,91)(55,92,135)(56,136,93)(57,94,137)(58,138,95)(59,96,139)(60,140,81)(61,82,141)(62,142,83)(63,84,143)(64,144,85), (1,110,90)(2,91,111)(3,112,92)(4,93,97)(5,98,94)(6,95,99)(7,100,96)(8,81,101)(9,102,82)(10,83,103)(11,104,84)(12,85,105)(13,106,86)(14,87,107)(15,108,88)(16,89,109)(17,133,125)(18,126,134)(19,135,127)(20,128,136)(21,137,113)(22,114,138)(23,139,115)(24,116,140)(25,141,117)(26,118,142)(27,143,119)(28,120,144)(29,129,121)(30,122,130)(31,131,123)(32,124,132)(33,71,49)(34,50,72)(35,73,51)(36,52,74)(37,75,53)(38,54,76)(39,77,55)(40,56,78)(41,79,57)(42,58,80)(43,65,59)(44,60,66)(45,67,61)(46,62,68)(47,69,63)(48,64,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(18,24)(19,31)(20,22)(21,29)(23,27)(26,32)(28,30)(33,41)(34,48)(35,39)(36,46)(38,44)(40,42)(43,47)(49,57)(50,64)(51,55)(52,62)(54,60)(56,58)(59,63)(65,69)(66,76)(68,74)(70,72)(71,79)(73,77)(78,80)(81,91)(83,89)(84,96)(85,87)(86,94)(88,92)(93,95)(97,99)(98,106)(100,104)(101,111)(103,109)(105,107)(108,112)(113,121)(114,128)(115,119)(116,126)(118,124)(120,122)(123,127)(129,137)(130,144)(131,135)(132,142)(134,140)(136,138)(139,143) );

G=PermutationGroup([[(1,125,37),(2,38,126),(3,127,39),(4,40,128),(5,113,41),(6,42,114),(7,115,43),(8,44,116),(9,117,45),(10,46,118),(11,119,47),(12,48,120),(13,121,33),(14,34,122),(15,123,35),(16,36,124),(17,75,110),(18,111,76),(19,77,112),(20,97,78),(21,79,98),(22,99,80),(23,65,100),(24,101,66),(25,67,102),(26,103,68),(27,69,104),(28,105,70),(29,71,106),(30,107,72),(31,73,108),(32,109,74),(49,86,129),(50,130,87),(51,88,131),(52,132,89),(53,90,133),(54,134,91),(55,92,135),(56,136,93),(57,94,137),(58,138,95),(59,96,139),(60,140,81),(61,82,141),(62,142,83),(63,84,143),(64,144,85)], [(1,110,90),(2,91,111),(3,112,92),(4,93,97),(5,98,94),(6,95,99),(7,100,96),(8,81,101),(9,102,82),(10,83,103),(11,104,84),(12,85,105),(13,106,86),(14,87,107),(15,108,88),(16,89,109),(17,133,125),(18,126,134),(19,135,127),(20,128,136),(21,137,113),(22,114,138),(23,139,115),(24,116,140),(25,141,117),(26,118,142),(27,143,119),(28,120,144),(29,129,121),(30,122,130),(31,131,123),(32,124,132),(33,71,49),(34,50,72),(35,73,51),(36,52,74),(37,75,53),(38,54,76),(39,77,55),(40,56,78),(41,79,57),(42,58,80),(43,65,59),(44,60,66),(45,67,61),(46,62,68),(47,69,63),(48,64,70)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14),(18,24),(19,31),(20,22),(21,29),(23,27),(26,32),(28,30),(33,41),(34,48),(35,39),(36,46),(38,44),(40,42),(43,47),(49,57),(50,64),(51,55),(52,62),(54,60),(56,58),(59,63),(65,69),(66,76),(68,74),(70,72),(71,79),(73,77),(78,80),(81,91),(83,89),(84,96),(85,87),(86,94),(88,92),(93,95),(97,99),(98,106),(100,104),(101,111),(103,109),(105,107),(108,112),(113,121),(114,128),(115,119),(116,126),(118,124),(120,122),(123,127),(129,137),(130,144),(131,135),(132,142),(134,140),(136,138),(139,143)]])

39 conjugacy classes

class 1 2A2B3A3B3C3D4A4B6A6B6C6D6E···6L8A8B12A12B12C12D16A16B16C16D24A···24H
order12233334466666···688121212121616161624···24
size118222227222228···8224444181818184···4

39 irreducible representations

dim111122222244
type+++++++++-
imageC1C2C2C2S3D4D6D8C3⋊D4SD32D4⋊S3D8.S3
kernelC328SD32C24.S3C325Q16C32×D8C3×D8C3×C12C24C3×C6C12C32C6C3
# reps111141428448

Matrix representation of C328SD32 in GL6(𝔽97)

100000
010000
001000
000100
0000610
0000035
,
100000
010000
0096100
0096000
0000610
0000035
,
10440000
53100000
00648300
00503300
0000072
0000660
,
100000
0960000
001000
000100
000010
0000096

G:=sub<GL(6,GF(97))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,61,0,0,0,0,0,0,35],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,96,96,0,0,0,0,1,0,0,0,0,0,0,0,61,0,0,0,0,0,0,35],[10,53,0,0,0,0,44,10,0,0,0,0,0,0,64,50,0,0,0,0,83,33,0,0,0,0,0,0,0,66,0,0,0,0,72,0],[1,0,0,0,0,0,0,96,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,96] >;

C328SD32 in GAP, Magma, Sage, TeX

C_3^2\rtimes_8{\rm SD}_{32}
% in TeX

G:=Group("C3^2:8SD32");
// GroupNames label

G:=SmallGroup(288,302);
// by ID

G=gap.SmallGroup(288,302);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,85,254,135,142,675,346,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^16=d^2=1,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d=c^7>;
// generators/relations

׿
×
𝔽